
EECS598-012 Project Proposal: 3D Point Cloud Completion

Mingyu Yang, Luya Gao, Shiyu Liu
University of Michigan

{mingyuy, mlgao, shiyuliu}@umich.edu

1. Introduction

3D acquisition technologies has been widely involved
in the industries of autonomous driving and robotics. In
a wide collection of 3D representations, point cloud is well
preferable for various computer vision tasks. Compared to
voxelized 3D data that cubically grows with the data size,
point cloud is a tractable and highly scalable way of depict-
ing either objects or scenes in the 3D space. Along with
the explosion of real-world 3D data, such as those captured
by LiDAR scans, we notice that most of them are noisy
and sparse due to limited sensor resolution and interference
(e.g. occlusions) among objects. The wider applications of
downstream tasks such as 3D object detection and view ex-
trapolation has also created a growing demand for denser
and more complete 3D scans. One approach would be tak-
ing multiple scans and align them afterwards, but it is ex-
pensive and does not guarantee we could cover every angle.
It would be very interesting, however, if we could learn a
shape prior to help us inpaint an incomplete 3D scan. This
is not only more efficient, but also could be applied to more
general scenarios where taking scans from different angles
is not always possible.

In this course project, we propose to tackle the problem
of sparse 3D object scans through 3D point cloud comple-
tion. Our method is based on PCN [16], one of the most ac-
knowledged benchmarks in the 3D completion domain. We
implemented this architecture with Pytorch and sought to
improve this method by experimenting with self-attention
layers and advanced loss terms such as classification loss
and feature loss.

2. Related Works

The point cloud based 3D shape completion is a surging
research area benefited from the pioneering work of Point-
Net [9] and PointNet++ [10]. Compared with voxelized 3D
data, point cloud requires a smaller memory cost. Recent
notable studies such as PCN [16] and FoldingNet [15] usu-
ally learn a global representation from partial point cloud
and generate the complete shape based on this learned fea-
ture. Following the same practise, a tree-structured decoder

Figure 1. Data samples from ShapeNet [1].

was proposed in TopNet [11]. To make better use of the in-
complete point cloud, PF-NET [7] only recovers the miss-
ing points with a multi-scale generating network and an ad-
ditional adversarial loss. More recently, a style-coded fold-
ing network is adopted in [13] to boost the model capacity.
Besides, in order to generate visually-pleasing results, the
generated point clouds are projected to depth images and
is further examined by adversarial discriminators. Despite
the supervised learning methods introduced above, there are
also recent works [2, 12] that explore unpaired point cloud
completion where the ground truth completed point clouds
are not provided.

3. Point Completion Network

The first part of our work is to re-implement the PCN
method using PyTorch, whose overall diagram is shown in
Figure. 2. The encoder is an extended version of PointNet
[9] that abstracts the input cloud X as a global feature vec-
tor v. It inherits the invariance to permutation and tolerance
to nosie from PointNet. Specifically, the encoder consists
of two stacked PointNet layers. The first layer consumes m
input points and the input P is a m × 3 matrix where each
row is the 3D coordinate of a point pi. Then, each point
coordinate pi are transformed to a k-dimensional point fea-
ture fi using a shared multi-layer perceptron (MLP), which
gives us a point feature matrix F . After that, a point-wise
maxpooling is performed on F to obtain a k-dimensional
global feature g. Similarly, the second PointNet layer takes
the concatenation of F and g as input and gives us the final

1

Figure 2. Diagram of PCN architecture in [16]

feature vector v.
The decoder of PCN performs multistage point genera-

tion where a MLP is use for coarse estimation and a folding-
based decoder [15] is used for fine estimation. In the first
stage, the coarse estimation Ycoarse of s points is generated
by feeding the global feature v to a MLP to get a 3s output
and reshaping the output to a s × 3 matrix. In the second
stage, for each point qi in Ycoarse, a patch of t = u2 points
is generated in the local coordinates centered at qi via the
folding operation, and transformed into the global coordi-
nates by adding qi to the output. Then, all s patches are
combined to achieve the detailed output Ydetail consisting
of st points.

In the original PCN paper, the loss function for the coarse
estimation Ycoarse contains both Chamfer Distance (CD)
and Earch Mover’s Distance (EMD) [3] whereas the loss
function for Ydetail only contains CD. However, due to the
high computational cost of EMD, we only use CD in our
project. An expression of CD between two point clouds T
andR is given by:

CD(T ,R) =
1

|T |
∑
t∈T

min
r∈R
‖t− r‖2 +

1

|R|
∑
r∈R

min
t∈T
‖r − t‖2

4. Modifications on PCN

Although PCN provides us with reasonable point cloud
reconstructions, we find two problems that might limit the
system performance: 1) The generation of the global feature
v is too simple to capture the global structure of the input
partial point cloud, 2) The fine estimation Ydetail is only
guided with CD, which is not enough to generate realistic
3D shapes. To deal with the first problem, we introduce
self-attention (SA) layers to better capture the point-point
relationship. Besides, we introduce an additional classifica-
tion loss for the global vector v to encourage object-aware
point cloud generation. For the second problem, we propose
to project point clouds to the feature space via a pre-trained
point cloud auto-encoder. Then we enforce their similarity
using MSE loss.

Figure 3. Diagram of the self-attention layers used in our project.

4.1. PCN with self-attention layers

In this project, we utilize the SA layers introduce in Point
Cloud Transformer (PCT) [5], which is shown in Figure. 3.
In [5], the authors use a stack of such SA layers and achieve
the state-of-the-art performance in point cloud classifica-
tion and segmentation. Similar with the transformer in NLP,
for each d-dimensional point feature, three vectors are com-
puted: query, key and value through linear layers. Then, the
attention weight between any two points can be obtained
by matching (dot-producting) their query and key vectors,
and the attention feature is defined as the weighted sum of
all value vectors with attention weights. Then the attention
feature is subtracted by the input feature, passed through a
LBR layer and then added with the input through an addi-
tional residual path to produce the output. This SA structure
is quite suitable for point cloud outputs because 1) the SA
operation is inherently permutation-invariant, 2) SA opera-
tion is able to learn the relationship between two points that
are far from each other in the space.

Then, we modified the PCN encoder by inserting addi-
tional SA layers and the structure is shown in Figure. 4.
We follow the data processing of PCN encoder to get the
feature embeddings for each point. In the meantime, we
treat the intermediate point feature F̄ as the positional em-
bedding vectors since it contains no inter-point connections.
We find that adding such position embedding to each SA
layer greatly improves the converging speed during train-
ing. After the three consecutive SA layers, we concatenate
their outputs as the new point feature F̃ and feed them to
another PN layer to get the final global vector v.

4.2. Additional Classification Loss

To make the global feature more powerful, we train an
additional classification network that takes the global fea-
ture v as input and predict its object category. The motiva-
tion is that we think the distribution of points is significantly
related to the object categories. For example, the surface of
a car tends to be flat and smooth while a table usually con-
tains thin legs and sudden curvature changes at the joints.

2

Figure 4. Diagram of the modified PCN encoder with self-attention
layers.

Let vi be the global feature of the ith point cloud and Li

be its one-hot label where the value is one for correct class
and is zero otherwise. Suppose the classification network is
D, the probability vector pi for the ith point cloud can be
calculated as pi = softmax{D(vi)}. Then, the classification
loss Lcla is:

Lcla = − 1

N

N∑
i=1

C∑
j=1

Lij log(pij)

where C is the total number of categories.

4.3. Constraints in Feature Space

Another possible way to emphasize and preserve the
global feature during training is to add constraints in fea-
ture space on top of the reconstruction loss given by CD.
Similar to other losses and criteria we examine, this feature
space perceptual loss is also permutation invariant, based
on the assumption that the bottleneck feature vector cap-
tures high-level information of the input point cloud. In this
way, additional supervision at the bottleneck can directly
regularize the encoder network.

In our experiment, we first train an autoencoder that aims
to reconstruct the ground truth point cloud, then freeze this
encoder when training PCN. With the feature vector of a
partial point cloud encoded by PCN encoder Epcn(·), we si-
multaneously encode the corresponding ground truth point
cloud with the pretrained encoder Epre(·) and acquire a
“ground truth” feature vector. Then the feature space con-
straints is given by the mean-squared error between the fea-
ture vectors:

Lfeat = MSE(Epcn(Ppartial), Epre(Pgt)),

where Ppartial and Pgt refer to the input and ground truth
point clouds correspondingly.

5. Experiments
5.1. Experimental Setup

Dataset. We train and evaluate the point cloud completion
network on the Completion3D [11] dataset, which is a sub-

division of the ShapeNet. This dataset contains point clouds
of 8 categories, including 28,784 training samples and 800
validation samples. The ground truth point clouds has 2048
points, which is quite sparse and friendly to our project. For
each complete point cloud, 8 partial point clouds are sam-
pled from 8 randomly distributed viewpoints.
Evaluation metric. We use the Chamfer Distance (CD)
to evaluate the models we reproduce and improved on the
validation split of the Completion3D [11] dataset.
Models. As comparison, we train a baseline model follow-
ing prior works [4, 11] where only a set of fully connected
layers is adopted as the point cloud decoder. We also use
the PCN model as another baseline model.

For our proposed method, we test three different mod-
els: PCN+self-attn, PCN+classification and PCN+feature.
The PCN+self-attn model simply replaces the PCN en-
coder with the new encoder proposed in section 4.1.
PCN+classification adds the additional classification net-
work in section 4.2 to the PCN model. PCN+feature adds
the feature loss in section to the PCN model. Due to the
time limit, we haven’t integrate all proposed components.

All models we tested contains a CD loss LCD for both
the coarse point cloud and fine point cloud. The loss func-
tion for PCN+classification is a weighted sum of LCD and
Lcla while the loss function for PCN+feature is a weighted
sum of LCD and Lfeat.

5.2. Quantitative analysis

The quantitative analysis of different point cloud com-
pletion methods is shown in Table. 1. Among the three
proposed models, PCN+classification and PCN+self-attn
outperforms the two baselines. It can be observed that
PCN+self-attn achieves the best performance and provides
a large improvement against the PCN baseline, demonstrat-
ing the power of SA layers. On the contrary, we achieve
a worse performance with PCN+feature compared to the
PCN baseline. However, we think it is too early to say
that adding additional feature loss doesn’t help. One pos-
sible reason for the unsatisfactory result is that the hyper-
parameters or the training strategy we are using is not opti-
mal and we need more experiments to find the best scheme.

5.3. Qualitative analysis

From the data for evaluation, we draw samples belonging
to different categories and visualize the outcome of different
models in Figure 5. As illustrated in the figure, PCN+self-
attn is able to produce the most faithful reconstructions even
in cases where the cues on shape and construction barely
exists in the input (incomplete) point clouds. Moreover,
the model with SA layers can concentrate the points in the
recovered point clouds, resulting in more informative con-
structions to better serve the purpose of point cloud comple-
tion such as refining a LiDAR map.

3

Table 1. Point completion results on Completion3D measured using Chamfer Distance (CD). For each evaluated model, the CD is computed
on 2,048 points and multiplied by 104.

Methods Average Airplane Cabinet Car Chair Lamp Sofa Table Watercraft

Baseline (reproduced) 17.52 5.71 20.18 8.23 20.22 30.60 15.15 26.54 13.53
PCN (reproduced) 16.64 5.13 21.02 8.15 19.68 26.33 14.28 26.51 12.05

PCN + feature 17.46 5.22 22.13 8.26 19.40 30.51 15.66 26.36 12.15
PCN + classification 15.80 4.43 19.49 7.66 18.31 26.54 13.44 25.33 11.22

PCN + self-attn 13.65 3.68 18.77 7.10 16.65 19.50 12.34 22.03 9.12

Figure 5. Point cloud completion results on the validation split of Completion3D.

We also notice that there are cases where none of the
point completion models we study can produce reconstruc-
tions close enough to the ground truth. Some typical failure
cases are presented in Figure 6 in the Appendix. By obser-
vation, the models are not capable of reconstructing hollow
shapes such as the lamp at the top row of Figure 6. When
the object is rare in the training set (as illustrated in the
middle row), the recovered point cloud will be dissimilar
to the ground truth. Nevertheless, the recovery is informa-
tive, provided that the partial point cloud is recovered to a
sedan rather than a truck. We also find that our models are
likely to fail when the input point cloud contains little infor-
mation about the object (as shown in the last row). In this
case, our proposed improvements manage to produce more

reasonable reconstructions than the baseline methods.

6. Conclusions
In this work, we re-implemented PCN [16] on PyTorch

platform and explored several ways to improve this method.
In general, our proposed improvements aim to provide more
powerful supervision so as to preserve the global feature of
the recovered point cloud that inherits from the input (par-
tial) point cloud. Based on this goal, we present the us-
age of self-attention layers, adding classification and fea-
ture losses. Evaluation results show that the modified meth-
ods outperform the baselines from the viewpoints of both
Chamfer Distance and visual quality.

4

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[2] Xuelin Chen, Baoquan Chen, and Niloy J Mitra. Unpaired
point cloud completion on real scans using adversarial train-
ing. arXiv preprint arXiv:1904.00069, 2019.

[3] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017.

[4] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan
Russell, and Mathieu Aubry. AtlasNet: A Papier-Mâché Ap-
proach to Learning 3D Surface Generation. In Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[5] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. arXiv preprint arXiv:2012.09688, 2020.

[6] Tao Hu, Zhizhong Han, and Matthias Zwicker. 3d shape
completion with multi-view consistent inference. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pages 10997–11004. AAAI Press, 2020.

[7] Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le.
Pf-net: Point fractal network for 3d point cloud completion.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7662–7670, 2020.

[8] Justin Johnson, Nikhila Ravi, Jeremy Reizenstein, David
Novotny, Shubham Tulsiani, Christoph Lassner, and Steve
Branson. Accelerating 3d deep learning with pytorch3d. In
SIGGRAPH Asia 2020 Courses, pages 1–1. 2020.

[9] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017.

[10] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017.

[11] Lyne P Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian
Reid, and Silvio Savarese. Topnet: Structural point cloud
decoder. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 383–392,
2019.

[12] Xin Wen, Zhizhong Han, Yan-Pei Cao, Pengfei Wan, Wen
Zheng, and Yu-Shen Liu. Cycle4completion: Unpaired point
cloud completion using cycle transformation with missing
region coding. arXiv preprint arXiv:2103.07838, 2021.

[13] Chulin Xie, Chuxin Wang, Bo Zhang, Hao Yang, Dong
Chen, and Fang Wen. Style-based point generator with

adversarial rendering for point cloud completion. arXiv
preprint arXiv:2103.02535, 2021.

[14] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao,
Shengping Zhang, and Wenxiu Sun. Grnet: Gridding resid-
ual network for dense point cloud completion. In ECCV,
2020.

[15] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 206–215, 2018.

[16] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and
Martial Hebert. Pcn: Point completion network. In 2018
International Conference on 3D Vision (3DV), pages 728–
737, 2018.

5

A. Failure Cases

Figure 6. Visualization of failure cases observed in evaluation.

B. Multiview Loss
As pointed out by [14], the distance criteria do not always faithfully reflect the reconstruction quality regarding the preser-

vation of structural correspondence within the point could. Further more, [6] underline that in real-word scenarios it is
unlikely to obtain supervision from completed, fine-grained point clouds. Under the aforementioned concerns, we experi-
mented with an adversarial loss term that leverages the consistency held among the 2D projections from multiple view points
of a single point cloud by drawing inspiration from [13].

To achieve this, we rendered the completed point cloud and the ground truth point cloud with the same pose and trained
a discriminator to distinguish between the two rendered results. To ensure that the completed point cloud has reasonable
appearances all around, we rendered each pointcloud with 8 viewpoints and added up the losses. We utilized PyTorch3D’s
renderer [8] to project the 3D model with the OpenGL orthographic camera. One example of this rendering is shown in Figure
7. We have included this part of the code in our github repo but are still in the process of jointly training the reconstruction
loss with this adversarial loss due to limits of computing resources. We hope to present the results in our future work.

Figure 7. Example of multi-view rendering of a chair pointcloud

6

	. Introduction
	. Related Works
	. Point Completion Network
	. Modifications on PCN
	. PCN with self-attention layers
	. Additional Classification Loss
	. Constraints in Feature Space

	. Experiments
	. Experimental Setup
	. Quantitative analysis
	. Qualitative analysis

	. Conclusions
	. Failure Cases
	. Multiview Loss

