

Efficient Deep Visual and Inertial Odometry with Adaptive Visual Modality Selection

- traditional geometric methods
- constraint devices

The experiments are conducted on KITTI Odometry dataset. The model is trained on path 00, 01, 02, 04, 06, 08, 09 and tested on path 05, 07, and 10.

Comparison with Heuristic Sampling Baselines

Baseline #1: random sampling with a probability of *p* Baseline #2: regular skipping with *n*

Mingyu Yang, Yu Chen, Hun-Seok Kim EECS, University of Michigan, Ann Arbor, MI

Model Evaluation and Interpretation

Deep VIO with Visual Modality Selection

Comparison with SOTA VO/VIO Methods

		Seq.05			Seq.07			Seq.10		
	Method	t _{rel} (%)	r _{rel} (°)	Usage (%)	t _{rel} (%)	r _{rel} (°)	Usage (%)	$t_{rel}(\%)$	$r_{rel}(\circ)$	Usage (%)
Geo	ORB-SLAM2 *	9.12	<u>0.2</u>	100	10.34	<u>0.3</u>	100	4.04	<u>0.3</u>	100
	VINS-Mono [†]	11.6	1.26	100	10.0	1.72	100	16.5	2.34	100
Self- Sup.	Monodepth2 *	4.66	1.7	100	4.58	2.6	100	7.73	3.4	100
	VIOLearner [†]	3.00	1.40	100	3.60	2.06	100	2.04	1.37	100
	DeepVIO [†]	2.86	2.32	100	2.71	1.66	100	<u>0.85</u>	1.03	100
Sup.	GFS-VO *	3.27	1.6	100	3.37	2.2	100	6.32	2.3	100
	BeyondTracking *	2.59	1.2	100	3.07	1.8	100	3.94	1.7	100
	Soft Fusion [†]	4.44	1.69	100	2.95	1.32	100	3.41	1.41	100
	Hard Fusion [†]	4.11	1.49	100	3.44	1.86	100	1.51	0.91	100
	(ours) baseline [†]	2.61	1.06	100	1.83	1.35	100	3.11	1.12	100
	(ours) $\lambda = 3 \times 10^{-5}$ †	<u>2.01</u>	0.75	20.6	<u>1.79</u>	0.76	19.79	3.41	1.08	22.68
	(ours) $\lambda = 5 \times 10^{-5}$ †	2.71	1.03	<u>11.34</u>	2.22	1.14	<u>10.57</u>	3.59	1.20	<u>12.2</u>

*Visual Odometry [†]Visual Inertial Odometry

Acknowledgement: This work was supported in part by Meta Platforms, Inc. We also acknowledge Google LLC for providing GCP computing resources.

Paper ID: 7099

Step 1: At time *t*, the IMU data between adjacent images is fed to the inertial encoder to extract the inertial feature x_t^i

Step 2: The decision module takes in the inertial feature x_t^i and the hidden state h_{t-1} , and outputs the probability of a Bernoulli dist. p_t , from which decision d_t is sampled. <u>Gumbel-softmax</u> is adopted to make the sampling differentiable.

Step 3: If $d_t = 0$, x_t^i is fed to the LSTM along with zeros. Otherwise, images are passed through the visual encoder and generate visual features x_t^{ν} . Then we concat. x_t^{ν} and x_t^{i} and fed them to the LSTM.

Step 4: The LSTM network produces the pose estimation for time t and the hidden state h_t