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Introduction
• Visual-inertial odometry (VIO) estimates the agent’s self-motion using

information from cameras and inertial measurement unit (IMU)

• Deep learning-based VIO has shown competitive performance compared with

traditional geometric methods

• Prior works use both visual and inertial inputs -- not affordable for energy-

constraint devices

• We propose to learn a policy to adaptively disable the visual encoder (VE) to

save computation while remaining a similar performance using full modality
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Deep VIO with Visual Modality Selection

Model Evaluation and Interpretation

Step 1: At time 𝑡, the IMU data between adjacent

images is fed to the inertial encoder to extract

the inertial feature 𝑥𝑡
𝑖

Step 2: The decision module takes in the inertial

feature 𝑥𝑡
𝑖 and the hidden state ℎ𝑡−1, and outputs

the probability of a Bernoulli dist. 𝑝𝑡, from which

decision 𝑑𝑡 is sampled. Gumbel-softmax is

adopted to make the sampling differentiable.

Step 3: If 𝑑𝑡 = 0, 𝑥𝑡
𝑖 is fed to the LSTM along with

zeros. Otherwise, images are passed through

the visual encoder and generate visual features

𝑥𝑡
𝑣. Then we concat. 𝑥𝑡

𝑣 and 𝑥𝑡
𝑖 and fed them to

the LSTM.

Step 4: The LSTM network produces the pose

estimation for time 𝑡 and the hidden state ℎ𝑡

𝐿 = 𝐿𝑝𝑜𝑠𝑒 + 𝐿𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
1

3(𝑇 − 1)


𝑡=1

𝑇−1

𝑣𝑡 − ො𝑣𝑡 2
2 + 𝛼 𝜙𝑡 − 𝜙𝑡 2

2
+

1

𝑇 − 1


𝑡=1

𝑇−1

𝜆𝑑𝑡

The experiments are conducted on KITTI Odometry dataset. The model is

trained on path 00, 01, 02, 04, 06, 08, 09 and tested on path 05, 07, and 10.

Comparison with Heuristic Sampling Baselines

Baseline #1: random sampling with a probability of 𝑝
Baseline #2: regular skipping with 𝑛

20% image usage 12.5% image usage

Visual Interpretation of Learned Policy Comparison with SOTA VO/VIO Methods

• The decision-making process exhibits an Integrate-and-fire pattern

• The learned policy shows decreasing visual encoder usage when the

vehicle is turning or driving in a low speed
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Geo

ORB-SLAM2 ∗ 9.12 0.2 100 10.34 0.3 100 4.04 0.3 100

VINS-Mono † 11.6 1.26 100 10.0 1.72 100 16.5 2.34 100

Self-

Sup.

Monodepth2 ∗ 4.66 1.7 100 4.58 2.6 100 7.73 3.4 100

VIOLearner † 3.00 1.40 100 3.60 2.06 100 2.04 1.37 100

DeepVIO † 2.86 2.32 100 2.71 1.66 100 0.85 1.03 100

Sup.

GFS-VO ∗ 3.27 1.6 100 3.37 2.2 100 6.32 2.3 100

BeyondTracking ∗ 2.59 1.2 100 3.07 1.8 100 3.94 1.7 100

Soft Fusion † 4.44 1.69 100 2.95 1.32 100 3.41 1.41 100

Hard Fusion † 4.11 1.49 100 3.44 1.86 100 1.51 0.91 100

(ours) baseline † 2.61 1.06 100 1.83 1.35 100 3.11 1.12 100

(ours) 𝜆 = 3 × 10−5 † 2.01 0.75 20.6 1.79 0.76 19.79 3.41 1.08 22.68

(ours) 𝜆 = 5 × 10−5 † 2.71 1.03 11.34 2.22 1.14 10.57 3.59 1.20 12.2
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Proposed method with a policy network that dynamically disables the visual encoder (VE), 

which is much more costly than the inertial encoder (IE)
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