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Abstract

In many scenarios, dataset shifts continuously over time
and that leads to decayed performance of machine learn-
ing models. Existing domain adaptation methods either
rely on learning representations that are invariant to the
dataset shift, or gradually adapt to the shifting domains
step by step. However, these methods neglect the tempo-
ral ordering of the collected data, and it could lead to sub-
optimal performance when the underlying domain shift has
a learnable dynamics. In this work, we propose a drift-
aware predicting coding scheme that is able to represent
temporally ordered domains as a sequence of embedding
vectors. With the awareness of embedding vectors from
past domains, we could have a better adaption to the fu-
ture domains where the labels are missing. Experiments on
two toy datasets and two benchmarks (Rotating MNIST and
a Portaits dataset) demonstrate that the proposed method
outperforms the baselines without learning the dynamics of
domain shifting.

1. Introduction
Machine learning models are often deployed for an ex-

tended period of time, e.g., several weeks or a season. How-
ever, dataset shift is common for real-life applications, e.g,
self-driving, chemical sensors, etc [2, 12]. Frequently label-
ing new data and updating the model are expensive and sen-
sitive to noisy data. Domain adaptation tackles the dataset
shift problem by learning representations that are invariant
to domains shift [9, 15, 13, 19, 11]. However, most domain
adaptation methods neglect the temporal ordering of col-
lected data. Thus, they cannot leverage the underlying do-
main shift dynamics to better adapt to the shifting environ-
ment. Recently, researchers proposed to use self-training
to gradually adapt a model trained on a labeled source do-
main to a target domain, with the aid of multiple temporally
ordered intermediate domains [12]. However, the pseudo-
labels generated for self-training may be inaccurate when
dataset shift is large, leading to poor domain adaptation per-
formance. In addition, the self-training approach does not

directly learn the domain shift dynamics, which may lead to
inferior performance than a method that directly models the
shift dynamics.

We argue that domain shifting dynamics is informative
for making predictions in a gradually shifting environment.
In this project, we propose to directly learn the environ-
ment shift dynamics through representation learning. For
each domain, our proposed approach learns a Drift-Aware
Predictive(DAP) coding, which embeds information help-
ful for predicting the next domain,and modulates the base
learner(for example, a classifier in a classification problem)
to adapt to the shifted new domain. Our method is end-to-
end trainable and during training, we sample each domains
to build a chain connecting all domains. During testing,
in each step, we collect the predictive embedding from last
domain and modulate the base learner with that embedding.
We show that this approach can capture the shifting dynam-
ics between domains and adjust decision boundaries in each
step. Meanwhile, we also show that utilizing unlabelled tar-
get domain data can promote the learning process.

To summarize, the main work of this project are: (1) We
propose to directly learn the shifting dynamics in a grad-
ually shifting environment and show that these dynamics
are informative for making predictions. (2) We improve the
learned shifting dynamics by exposing unlabelled target do-
main data through adversarial learning. (3) We show the
changing of decision boundaries on synthesized data and
show quantitative results on Rotating-MNIST and Yearbook
Portrait[7] data.

The remainder of this paper is organized as follows. A
brief summary of related work is provided in Sec.2 . Details
of training and the pose prediction process are explained in
Sec.3. Experimental results are reported in Sec.4 and Sec.
5. The paper concludes in Sec.6.

2. Related Work
Unsupervised Domain adaptation In unsupervised do-

main adaptation, the goal is to directly adapt from a
labeled source domain to an unlabeled target domain.
Various prior literature have been proposed including
discrepancy-based methods [4], adversary based methods
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[16], and reconstruction-based methods [3]. Discrepancy-
based methods aim to induce alignment between the source
and target domains in some feature space. One popular
discrepancy measure is the maximum mean discrepancy
(MMD) [4] or the distance between the mean of two do-
mains in some kernel space. Another way to define discrep-
ancy is by training an adversarial discriminator [16] that
distinguishes between two domains. However, both these
approaches, MMD and adversarial training, are very diffi-
cult to optimize in training and often fail to converge and
get stuck on a local minimum. Another class of methods
directly transform the source images to resemble the target
images with generative models [3]. These methods oper-
ate directly on image pixels rather than the latent represen-
tation space unlike discrepancy based approaches. In this
project, we use adversarial methods to promote the learning
of domain shift dynamics by aligning the feature distribu-
tion after feature fusion of DAP embedding and adapt the
discriminator to a continuously indexed domain setting.

Incremental Domain Adaptation Closely related to
our work are the incremental domain adaptation problems,
where the domain is assumed to shift smoothly over time
and the goal is to adapt the source domain to multiple target
domains incrementally. Different methods for traditional
static domain adaptations are applied to perform pair-wise
domain adaptation, such as optimal transport [10], adver-
sarial loss[1], generative adversarial networks[18] and lin-
ear transform[8]. Recently, self-training is shown to work
well for domain shifts with small Wasserstein-infinity dis-
tance, both theoretically and empirically [12]. Different
from other domain adaptation methods where the goal is
to match the distribution of feature vectors, self-training di-
rectly makes use of the classifier from the previous domain
to provide pseudo labels for current domain, with which the
classifier is fine-tuned afterwards. Here, the main difference
between our approach and the methods above is that our
method explicitly represents the dynamics of the domain
shift and directly uses them in both training and testing.

3. Method

3.1. Overview

In this section, we formalize the problem of gradual do-
main shifting and describe our method to solve this prob-
lem. We first introduce the Drift-Aware-Predictive(DAP)
coding and then we introduce an adversarial learning
method to improve the efficacy of this method.

Problem Setting. In this paper, we are solving
an unsupervised domain adaptation classification prob-
lem where we have a sequence of N source domains
{D0,D1, . . . ,DN−1}, and a sequence of M target domains
{DN ,DN+1, . . . ,DN+M−1}. The source domains are all
labeled while the testing domains are not. Starting from

the first domain D0, the dataset is gradually shifting. We
assume that the underlying domain shift is not completely
random and has some learnable drift dynamics. With the
data and labels from the source domains, our goal is to pre-
dict the labels for the target domains.

3.2. Drift-Aware Predictive Coding

The basic DAP consists of three modules: Feature ex-
traction module, feature fusion module and task specific
module. In the feature extraction module, similar with Do-
main2Vec [14], we train a feature extraction network E
that extract the domain-specific vector ei,js and domain-
predictive vector ei,jp for the ith data from jth domain, de-
noted as xi,j . That is,

ei,js , e
i,j
p = F (xi,j) (1)

The domain-specific vector ei,js contains information that is
useful for making accurate predictions on the current do-
main Dj . In the mean time, the domain-predictive vec-
tor ei,jp captures the necessary information from the cur-
rent domain that is most helpful for the classification of the
next domain Dj+1. Next, in the feature fusion module, we
train a feature fusion network F that fuses both the domain-
specific vectors from current domain Dj and the domain-
predictive vectors from the previous domain Dj−1. To rep-
resent the predictive information from the previous domain,
we take the average of all domain-predictive vectors from
Dj−1 as the predictive embedding vector ej−1p for Dj−1.
That is,

ej−1p =
1

|Dj |

|Dj−1|−1∑
i=0

ei,j−1p (2)

After that, we concatenate ej−1p with every domain-
specific vector ei,js and feed them to the feature fusion net-
work to get the fused feature vectors zi,j , which is,

zi,j = F (ej−1p , ei,js ) (3)

For domain D0 that doesn’t have any domain-predictive
vectors from the previous domain, we replace it with some
special hand-craft vectors. So far, we use zero vectors as
e−1p . At the end, we define the problem in the task-specific
module. In our case, we are solving a classification prob-
lem, and we simply pass the fused features zi,j to a classi-
fication network C for predictions.

Drift-Aware Predictive Loss For domain j, we define
the Drift-Aware Predictive Loss as:

LjDAP =

|Dj |−1∑
i=0

LCE
(
C(ei,jc ), yi,j

)
(4)

where yi,j denotes the ground truth class label for ith
data from domain Dj . Note that we need the ground



Figure 1. General structure of the proposed method. Left: The Vanilla DAP which contains three modules: Feature Extraction Module
(blue), Feature Fusion module (red) and task specific module (orange). The feature extraction module extracts the domain-specific vectors
es and drift-predictive vectors ep; the feature fusion module fuses the domain-specific vectors and the drift-predictive vectors from the
previous domain; the task specific module defines the task we would like to solve. In this paper, we are solving classification problems.
Right: DAP with distribution alignment. Another discriminator (green) is added to match the fused feature vectors z for all domains,
including the test domains, while the feature extraction module and feature fusion module stay the same.

truth labels to calculate the Drift-Aware Predictive Loss.
Thus, we can only calculate the loss for all source domains
{D0,D1, . . . ,DN−1}. And the total Drift-Aware Predictive
Loss can be represented as their sum, i.e.,

LDAP =

N−1∑
j=0

LjDAP (5)

If the above loss can be successfully minimized, the
domain-predictive embedding will be able to improve the
next base learner before any data is collected from the
shifted domain, i.e., proactively adapting to the changing
environment. Since we only receive the domain-predictive
vectors from the previous domain, our adaptation pipeline
forms a first-order Markov chain. However, for more com-
plicated domain shift dynamics, a higher-order might be
necessary.

3.3. Aligning Feature Distribution with Adversarial
Training

The basic DAP is supervised to capture the gradual do-
main shifting within source domains. However, without any
exposure to target domains, the model may not be able to
adapt well to future target domains especially when the data
dimension is high. Then, the distribution of fused vectors
z in the future domains may not align with the one from
source domains, causing the failure of the final classifica-
tion network. As a result, motivated by [17], we adopt an
adversarial training mechanism to align the distribution of
fused vectors from both source domains and target domains
such that the final classification network could deal with the
future target domains as well.

To align the fused vectors z after the feature extrac-
tion module and feature fusion module from all N + M

source and target domains, we require that p(z|ui) =
p(z|uj),∀ui, uj ∈ U . U is the set of all domain indices. In
our case, U = {0, 1, 2, ..., N +M − 1}. This requirement
implies that p(z|u) = p(z) and thus z and u are indepen-
dent. Similar with many adversarial approaches [5][13], we
train a discriminator D to predict each domain index while
our feature extraction and fusion network aim to fool the
discriminator, as shown in Figure 1(right). The intuition is
that, the fused vectors from all domains should be aligned
if no one could successfully predict their domain indexes.

In our problem setting, the data is gradually shifting and
our domain shift is continuous and ordinal. Therefore, in-
stead of doing classification, similar with [17], our discrim-
inator regresses the domain index. For simplicity, we use
L2 loss and the discriminative loss for domain Dj can be
expressed as ,

Ljd =
|Dj |−1∑
i=0

(D(zi,j)− uj)2 (6)

where uj denotes the domain index for Dj . Then, the
new optimization objective can be written as:

min
E,F,C

max
D
LDAP − λLd, (7)

where LDAP is the loss for drift-aware predictive coding
and Ld =

∑M+N−1
j=0 Ljd. λ is a weighting term. Note that

LDAP is only calculated on the labelled source domains and
Ld is calculated on both source and target domains.

3.4. Training Procedure

During training, in each step, we sample equal number
of samples from each domain and build a chain as in Figure



1. The base learner share its weight across all domains and
we modulate it with different DAP coding ejp to adapt it
to different domains. We either use single LDAP or the
adversarial objective in 7 to train the network, depending
on whether data in target domains is available.

3.5. Adapting to Test domains

After the predictive domain embedding model is trained
on the sampled sequence, we can apply it for model adap-
tation in the testing phase. Specifically, for each new test
domain Di,∀i ∈ {N,N + 1, . . . , N + M − 1}, we will
obtain a new base learner model fθi|eip by conditioning the
initial model parameters θ0 on the drift-predictive embed-
ding vector of the previous domain ei−1p .

4. Experiment

In this section, we experiment our Drift-Aware Predic-
tive Domain Adaptation on three datasets, (1) Toy ellipse
data and sine data (2) Rotated MNIST data and (3) Ameri-
can High School Portraits data(Yearbook)[7]. We show that
our model with drift-aware predictive coding can still per-
form well during gradual domain shifting and the decision
boundaries can gradually adapting according to the change
of data distribution.

4.1. Synthesized Toy Data

Toy ellipse data The toy ellipse data consists of 40 do-
mains indexed from 1 to 40, shifting from left to right as in
Figure 3 first column. In all three groups of data, the distri-
bution of left half(1st-20th domains) of the data are kept
the same. Data are normally distributed normally along
the boundary of a 1

4 circle with radius 5. While on the
right half(21st-40th domain), the data are distributed on a
1
4 ellipse with fixed short axis of 5 and varying long axis
a ∈ {5, 10, 15}. We treat this task as a binary classification
problem and the decision boundary is continuously evolv-
ing during the gradual shifting.

We train on 10 domains and test on the remaining 30
domains. Note that these three experiments have training
data with the same distribution in source domains while
they have different data in the target domains. We use only
LDAP for training and data in target domains is not visi-
ble during training. We compare our method with a simple
non-adaptation method.

Figure 3 shows the predictions of our methods and pre-
dictions of a simple baseline without any adaptation. Figure
2 shows the decision boundary of these three models under
1st,15th and 30th target domains. From these results, we
show that DAP coding can capture and forecast the future
trend of data even though data distributions in source do-
mains are kept the same. DAP coding can adjust the de-
cision boundaries during gradual domain shifting in target

domains and can have dynamic decision boundaries subject
to the actual domain shift.

Toy sine data The toy sine data also contains 40 domains
and data points are normally distributed along a sine curve
with three cycles. All the settings are the same with toy el-
lipse data except 15 domains are used for training. Last two
rows in Figure 4 shows the predictions of DAP model on toy
sine data and its dynamically changing decision boundaries.

Figure 2. Decision boundaries of toy ellipse data at {1st, 15th,
30th} target domains along the ellipse boundary. Note that data in
the source domains and first 10 target domains are in same distri-
bution. Each row contains results for an ellipse of different radius.

4.2. Rotated MNIST

We also evaluate our method on the MNIST handwritten
digits dataset. The dataset contains 60,000 images. Each
image is 28 x 28 pixels. We rotate these digits by a cer-
tain angle and split the dataset into a total of 20 domains
divided between training and testing. We take images ro-
tated between 0◦ and 15◦ to be our training source domains
and images between 15◦ and 60◦ for target domains. Note
that each image is seen at exactly one angle, so the training
procedure cannot track a single image across different an-
gles. Examples of the data from the Rotated MNIST dataset
is shown in Figure 6.

4.3. Yearbook Portraits

We additionally study our method on the publicly avail-
able American High School Yearbooks dataset. The dataset
contains 37,921 front-facing American high school year-
book photos over 120 years. Like the gradual domain adap-
tion paper, we use the first 2000 images (1905-1935) as



Figure 3. Results from ablation study on varying the radius of toy ellipse data. The radius values are {5, 10, 15} respectively for each
row. The first column is the data. Blue is the source domain and orange is the target domain. The second column shows the ground truth
classifications and decision boundary. The third column is the predicted decision boundary using our proposed method. The final column
shows the results without using the predictive and stationary embedding vectors and simply training on the source domain. Source domains
in third and fourth columns are marked with light colors while target domains are marked normally.

Figure 4. Results on the toy sine data. The first row shows the data, groundtruth and predictions of DAP and baseline models. The second
row shows the decision boundary in several {1st, 8th, 16th, 25th} target domains.

Figure 5. Comparison between Gradual Domain Adaptation(GDA) and our method when training includes different number of domains.
The y-axis is the test accuracy in percent and the x-axis is index of the domain. The suffix of Our-X and GDA-X indicates number of
domains used for the combined-source domain.



Figure 6. Examples of data from Yearbook[6] and Rotated MNIST.

the source, the next 14,000 (1935-1969) as the intermedi-
ate domains, and the next 2000 images as the target (1969 -
1973). The goal of our model is to classify the gender of the
student. Examples of the data from the Yearbook Portraits
dataset are shown in Figure 6.

5. Results
5.1. Gradual domain adaptation

We took Gradual Domain Adaptation(GDA) [12] as one
of the baselines. We follow the dataset split introduced
in section.4. We tested it on two datasets, Yearbook and
Rotated MNIST. In our proposed method, we take at least
two domains as the source domains so that the model can
learn the “trending”; however, in GDA, it only needs one as
source domain and then it can iteratively train (in an unsu-
pervised way) on the following successive domains. So for
a fair comparison, we group the same number of domains
as we used for training our model into one source domain to
test the GDA method. Figure.5 shows our method outper-
forms the baseline by a large margin, which further proves
the efficacy of our method.

5.2. Ablation Studies

We conduct a series of ablation studies to understand the
effects of several variables in our method such as the num-
ber of training domains and the batch size of each domain.

Intuitively, we expect that using a larger batch size from
each domain for training will result in higher accuracy and
similarly for using more training domains. We report in Ta-
ble 1 the average accuracies over our test domains as well as
the accuracy of the last test domain for the Rotated-MNIST
dataset when varying the batch size of random sample from
each domain. We consistently achieve over 96% test accu-
racy.

We also studied the effect of varying the number of do-

mains used for training and find as expected that perfor-
mance improves with more training domains. Recall there
are a total of 20 domains for the Rotated-MNIST dataset.
We record our results in Table 2. Surprisingly, there is a
large improvement from using 3 training domain (0.9433)
compared to just one training domain (0.6935). The trends
we observe from our ablation agrees with our intuition that
performance should increase with higher batch size and
more training domains.

We also analyzed the decision boundaries of our model
over time on the toy ellipse dataset. In Figure 2, we ob-
serve that our model is able to learn a decision boundary
that assumes a general shape of an ellipse indicating that
the model has learned to capture the underlying distribution
of our data over time.

Batch size Average test acc (%) Last domain acc (%)
64 0.9627 0.9256
128 0.9693 0.9347
256 0.9679 0.9397

Table 1. Ablation over batch size

# Average test acc (%) Last domain acc (%)
1 0.6935 0.3223
3 0.9433 0.915
5 0.9711 0.9453
7 0.9753 0.957

Table 2. Ablation over the number of training domains

5.3. Future Work

For future work, we aim to conduct more extensive anal-
ysis of our methodology and implement more baselines to
further evaluate the benefits of our approach. One paper we
would like to investigate further is the Conditional Adver-
sarial Domain Adaptation paper. They propose a framework
that conditions the adversarial domain adaptation on dis-
criminative information to enable alignment of multimodal
distributions. Another relevant benchmark is the CyCADA
paper which uses a cycle-consistency loss to adapt repre-
sentations at both the pixel-level and feature-level. We will
adapt these methods into our continuously indexed domain
setup. Additionally, we’d like to investigate further into
some of our current failure cases. Specifically, we find that
our model is not able to fully capture the optimal decision
boundary for the sine curve dataset which should be the tan-
gent to the curve.

6. Conclusion
In this project, we investigate the problem of domain

adaptation in a gradual shifting environment. We propose



to learn the shifting dynamics through drift-aware predic-
tive coding and our work shows that DAP coding is infor-
mative and can be used to adapt decision boundaries to each
domain and further improve the performance. We quantita-
tive evaluate our approach against several datasets and we
compare it against a strong state-of-the-art baseline, gradual
domain adaptation. Future work can investigate different
kinds of domain shifts and more experiments can be con-
ducted on real dataset.
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